A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
Authors
Abstract:
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new method.
similar resources
a sixth order method for solving nonlinear equations
in this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. periteration this method requires three evaluations of the function and one evaluation of its first derivative. a general error analysis providing the eighth order of convergence is given. several numerical examples are given to illustrate the efficiency and performance of the new ...
full textA NOTE ON "A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS"
In this study, we modify an iterative non-optimal without memory method, in such a way that is becomes optimal. Therefore, we obtain convergence order eight with the some functional evaluations. To justify our proposed method, some numerical examples are given.
full textA Sixth Order Method for Solving Nonlinear Equations
In this paper, we present a new iterative method with order of convergence sixth for solving nonlinear equations. This method is developed by extending a fourth order method of Ostrowski. Per iteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the sixth order of convergence is given. Several numerical ex...
full texta note on "a sixth order method for solving nonlinear equations"
in this study, we modify an iterative non-optimal without memory method, in such a way that is becomes optimal. therefore, we obtain convergence order eight with the some functional evaluations. to justify our proposed method, some numerical examples are given.
full textA New Sixth Order Method for Nonlinear Equations in R
A new iterative method is described for finding the real roots of nonlinear equations in R. Starting with a suitably chosen x 0, the method generates a sequence of iterates converging to the root. The convergence analysis is provided to establish its sixth order of convergence. The number of iterations and the total number of function evaluations used to get a simple root are taken as performan...
full textA Novel and Precise Sixth-Order Method for Solving Nonlinear Equations
This study presents a novel and robust three-step sixthorder iterative scheme for solving nonlinear equations. The contributed without memory method includes two evaluations of the function and two evaluations of the first derivative per iteration which implies 1.565 as its efficiency index. Its theoretical proof is furnished to show the error equation. The most important merits of the novel me...
full textMy Resources
Journal title
volume 4 issue 1 (WINTER)
pages 55- 60
publication date 2014-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023